CALCULUS II INVERSE HYPERBOLIC FUNCTIONS

PAUL L. BAILEY

It is possible to write the inverse hyperbolic functions as natural logarithms of algebraic expressions. To do this, we write e^x in terms of the hyperbolic function, then take the logarithm of both sides.

Let $y = \operatorname{arcsinh} x$. Then $x = \sinh y$. Now

$$e^y = \sinh y + \cosh y = \sinh y + \sqrt{\sinh^2 y + 1} = x + \sqrt{x^2 + 1},$$

 \mathbf{SO}

$$\operatorname{arcsinh} x = \log(x + \sqrt{x^2 + 1}).$$

Let $y = \operatorname{arccosh} x$. Then $x = \operatorname{cosh} y$. Now

$$e^{y} = \cosh y + \sinh y = \cosh y + \sqrt{\cosh^{2} y - 1} = x + \sqrt{x^{2} - 1}$$

 \mathbf{so}

$$\operatorname{arccosh} x = \log(x + \sqrt{x^2 - 1}).$$

Let $y = \operatorname{arctanh} x$, so that $x = \tanh y$. Let $u = e^y$, so that $\log u = y = \operatorname{arctanh} x$. Then

$$x = \frac{u - u^{-1}}{u + u^{-1}} = \frac{u^2 - 1}{u^2 + 1}$$

We wish to solve this equation to make x a function of u^2 . Multiplying by $u^2 + 1$, we obtain $xu^2 + x = u^2 - 1$. Then $(x-1)u^2 = -x - 1$, so $(1-x)u^2 = 1 + x$, whence $u^2 = \frac{1+x}{1-x}$. Taking the natural logarithm of both sides gives

$$\operatorname{arctanh} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right).$$

Let $y = \operatorname{arccoth} x$, so that $x = \operatorname{coth} y$. Let $u = e^y$, so that $\log u = y = \operatorname{arccoth} x$. Then

$$x = \frac{u + u^{-1}}{u - u^{-1}} = \frac{u^2 + 1}{u^2 - 1}$$

Then $xu^2 - x = u^2 + 1$, so $(x - 1)u^2 = x + 1$; thus $u^2 = \frac{x+1}{x-1}$. Taking the logarithm of both sides gives

$$\operatorname{arccoth} x = \frac{1}{2} \log \left(\frac{x+1}{x-1} \right).$$

Date: February 17, 2006.

Let $y = \operatorname{arcsech} x$, so that $x = \operatorname{sech} y$. Let $u = e^y$, so that $\log u = y = \operatorname{arcsech} x$. Then

$$x = \frac{2}{u+u^{-1}} = \frac{2u}{u^2+1}.$$

Then $xu^2 - 2u + x = 0$, so by the quadratic formula,

$$u = \frac{2 \pm \sqrt{4 - 4x^2}}{2x} = \frac{1 \pm \sqrt{1 - x^2}}{x}.$$

Since u is always positive, the negative radical solution is spurious. Taking the logarithm of both sides gives

$$\operatorname{arcsech} x = \log\Big(\frac{1+\sqrt{1-x^2}}{x}\Big).$$

Let $y = \operatorname{arccsch} x$, so that $x = \operatorname{csch} y$. Let $u = e^y$, so that $\log u = y = \operatorname{arccsch} x$. Then

$$x = \frac{2}{u - u^{-1}} = \frac{2u}{u^2 - 1}.$$

Then $xu^2 - 2u - x = 0$, so by the quadratic formula,

$$u = \frac{2 \pm \sqrt{4 + 4x^2}}{2x} = \frac{1 \pm \sqrt{1 + x^2}}{x}$$

Since \boldsymbol{u} is always positive, the negative radical solution is spurious. Taking the logarithm of both sides gives

$$\operatorname{arccsch} x = \log\left(\frac{1+\sqrt{1+x^2}}{x}\right).$$

 $\label{eq:constraint} \begin{array}{l} \text{Department of Mathematics and CSCI, Southern Arkansas University} \\ \textit{E-mail address: plbailey@saumag.edu} \end{array}$